Efficient conversion of acetate into lipids by the oleaginous yeast Cryptococcus curvatus

نویسندگان

  • Zhiwei Gong
  • Hongwei Shen
  • Wengting Zhou
  • Yandan Wang
  • Xiaobing Yang
  • Zongbao K. Zhao
چکیده

BACKGROUND Acetic acid is routinely generated during lignocelluloses degradation, syngas fermentation, dark hydrogen fermentation and other anaerobic bioprocesses. Acetate stream is commonly regarded as a by-product and detrimental to microbial cell growth. Conversion of acetate into lipids by oleaginous yeasts may be a good choice to turn the by-product into treasure. RESULTS Ten well-known oleaginous yeasts were evaluated for lipid production on acetate under flask culture conditions. It was found that all of those yeasts could use acetate for microbial lipid production. In particular, Cryptococcus curvatus accumulated lipids up to 73.4 % of its dry cell mass weight. When the culture was held in a 3-L stirred-tank bioreactor, cell mass, lipid content, lipid yield and acetate consumption rate were 8.1 g/L, 49.9 %, 0.15 g/g and 0.64 g/L/h, respectively. The fatty acid compositional profiles of the acetate-derived lipids were similar to those of vegetable oil, suggesting their potential for biodiesel production. Continuous cultivation of C. curvatus was conducted under nitrogen-rich condition at a dilution rate of 0.04 h(-1), the maximal lipid content and lipid yield were 56.7 % and 0.18 g/g, respectively. The specific lipid formation rate, lipid content and lipid yield were all higher under nitrogen-rich conditions than those obtained under nitrogen-limited conditions at the same dilution rates. Effective lipid production by C. curvatus was observed on corn stover hydrolysates containing 15.9 g/L acetate. CONCLUSIONS Acetate is an effective carbon source for microbial lipid production by oleaginous yeasts. Continuous cultivation of C. curvatus on acetate was promising for lipid production under both nitrogen-rich and nitrogen-limited conditions. These results provide valuable information for developing and designing more efficient acetate-into-lipids bioprocess.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Draft Genome Sequence of the Oleaginous Yeast Cryptococcus curvatus ATCC 20509

Cryptococcus curvatus ATCC 20509 is a commonly used nonmodel oleaginous yeast capable of converting a variety of carbon sources into fatty acids. Here, we present the draft genome sequence of this popular organism to provide a means for more in-depth studies of its fatty acid production potential.

متن کامل

Draft Genome Sequence of Cutaneotrichosporon curvatus DSM 101032 (Formerly Cryptococcus curvatus), an Oleaginous Yeast Producing Polyunsaturated Fatty Acids.

Cutaneotrichosporon curvatus DSM 101032 is an oleaginous yeast that can be isolated from various habitats and is capable of producing substantial amounts of polyunsaturated fatty acids. Here, we present the first draft genome sequence of any C. curvatus species.

متن کامل

Lipid production from corn stover by the oleaginous yeast Cryptococcus curvatus

BACKGROUND Microbial lipids produced from lignocellulosic biomass hold great promise for the biodiesel industry. These lipids usually consist of three major processes: pretreatment, enzymatic hydrolysis and lipid production. However, the conventional strategy of using biomass hydrolysates as the feedstock for lipid production suffers from low lipid coefficient and prohibitively high costs. More...

متن کامل

Conversion of biomass-derived oligosaccharides into lipids

BACKGROUND Oligocelluloses and oligoxyloses are partially hydrolyzed products from lignocellulosic biomass hydrolysis. Biomass hydrolysates usually contain monosaccharides as well as various amounts of oligosaccharides. To utilize biomass hydrolysates more efficiently, it is important to identify microorganisms capable of converting biomass-derived oligosaccharides into biofuels or biochemicals...

متن کامل

Oleaginous yeast platform for producing biofuels via co-solvent hydrothermal liquefaction

BACKGROUND Oleaginous microorganisms are attractive feedstock for production of liquid biofuels. Direct hydrothermal liquefaction (HTL) is an efficient route that converts whole, wet biomass into an energy-dense liquid fuel precursor, called 'biocrude'. HTL represents a promising alternative to conventional lipid extraction methods as it does not require a dry feedstock or additional steps for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015